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Featured Application: Terahertz thickness gauging of polymers and paint layers; one-hundred
percent inspection of plastic pipes; process control.

Abstract: We apply a fast terahertz time-domain spectroscopy (TDS) system based on electronically
controlled optical sampling (ECOPS) to contact-free thickness gauging. Our setup achieves a
measurement speed of 1600 terahertz pulse traces per second, which—to our knowledge—represents
the fastest thickness measurement performed with any terahertz system to-date. Using a silicon wafer
as a test sample, we compare data of the ECOPS experiment to results obtained with a conventional
terahertz TDS system and a mechanical micrometer gauge. We show that all systems provide
consistent results within the measurement accuracy. Moreover, we perform thickness measurements
of a rapidly moving sample and characterize the ECOPS setup with respect to time-domain dynamic
range, signal-to-noise ratio, and spectral properties.

Keywords: terahertz time-domain instrumentation; thickness gauging; ECOPS; real-time inspection;
non-destructive testing

1. Introduction

Non-destructive thickness measurements [1] play an increasingly important role in industrial
quality control, cost management and process monitoring. In automotive manufacturing, the correct
structure of paint and coating layers determines not only the overall aesthetics, but also resistance
to UV radiation damage and corrosion. In pharmaceuticals, tablet coatings regulate the release of
the drug inside the body. In polymer extrusion, precise thickness measurements can reduce costs
while ensuring an uncompromised product quality. All of these industrial applications require a
measurement technique that is intrinsically safe, accurate to the micrometer level, and capable of
resolving multi-layered samples. Above all, the gauging system needs to be inherently fast, providing
at least 1000 thickness readings per second, to match the standard set by alternative methods such as
eddy current devices [2].

Initial work on terahertz-based thickness measurements dates back to the 1990s [3,4], when
Duvillaret et al. investigated methods for the extraction of optical constants (i.e., the complex refractive
index of samples) via thickness assessments. Subsequent works focused on introducing new algorithms
for the extraction of material parameters [5–7], on paint thickness [8–10] and coating layer [11,12]
gauging, and on the identification of concealed defects [13].
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Most of the work accomplished to-date made use of conventional terahertz TDS systems [14].
A standard TDS system employs a femtosecond laser, with the laser beam being split in two paths.
The first pulse train illuminates the emitter—usually a photoconductive antenna—and generates
terahertz radiation. The terahertz pulses interact with the sample and arrive at the receiver side, where
they are superimposed with the second laser pulse train. In order to “readout” the terahertz pulses,
the second laser pulse train is time-shifted with the help of a mechanical delay stage.

For a delay length of several 100 picoseconds, the measurement speed of conventional systems
ranges from a few to few 100 terahertz pulse traces per second [15–17], and thus falls short of the
requirements for high-speed monitoring.

In order to overcome the bottleneck in terms of measurement speed, two faster terahertz TDS
concepts have been proposed: asynchronous optical sampling (ASOPS) [18–20] and, more recently,
ECOPS [21–23]. Both techniques operate without a mechanical delay, and have proven capable of
recording more than 1000 terahertz pulse traces per second.

ASOPS, in brief, employs two pulsed lasers with fixed, albeit slightly different repetition rates.
The time delay between the two lasers varies periodically between zero and the inverse repetition
rate. Consequently, the time needed to acquire a complete terahertz trace depends on the difference
between the two repetition rates. If a sufficiently large difference is chosen, the measurement speed
can amount to several thousand scans per second. However, there are several limitations for the use of
ASPOS in ”real-world” applications. First, femtosecond fiber lasers in the telecom wavelength regime
of 1.5 µm—the workhorses in most of today’s terahertz TDS systems [15,24]—have typical repetition
rates between 250 MHz and 40 MHz. Using these lasers for ASOPS would lead to unnecessarily long
scan ranges from 4 ns to 25 ns, i.e., most of the measurement time would be wasted. Lasers with GHz
repetition rates can, in principle, reduce the amount of “dead time”, yet these repetition rates call for
more complex Ti:sapphire systems [20,25]. The use of Ti:sapphire lasers, in turn, changes the optical
wavelength to ~0.8 µm, which complicates pulse transmission through optical fibers. Either way, any
ASOPS system that measures 1000 (or more) traces per second with nanosecond scan ranges requires
transimpedance amplifiers and data acquisition electronics of an extremely high bandwidth (hundreds
of MHz to several GHz). Not only does this bandwidth range have detrimental effects on the SNR, but
it also drives the size and price of the system.

ECOPS, likewise, employs two femtosecond lasers. In contrast to ASOPS, however, only one
laser has a fixed repetition rate. The repetition rate of the second laser is tunable, and is modulated
around that of the first laser. The net effect is equal to a mechanical delay, just significantly faster,
with data acquisition rates well in the kHz range [23]. Scan range and scanning speed can be selected
according to the requirement of the experiment. Kim et al. demonstrated that ECOPS achieved a better
dynamic range than ASOPS at the same measurement speed, or vice versa, a drastically (~50x) higher
measurement speed for the same dynamic range [22]. Recently, the same group applied an ECOPS
system to three-dimensional terahertz imaging [26]. In this work, we demonstrate the usage of ECOPS
for terahertz-based thickness measurements at unprecedented speed.

In the following sections of this paper, we first describe the ECOPS setup and its main components.
We then discuss the system performance in terms of time-domain dynamic range, signal-to-noise
ratio and terahertz bandwidth, including the effect of pulse-trace averaging and the interplay
between measurement speed and scan range. Finally, we apply our ECOPS instrument to thickness
measurements of a piece of a silicon wafer, and compare the results to values obtained with a
conventional TDS system and with a mechanical micrometer gauge. Simulating the scenario of
an industrial production line, we examine the aforementioned wafer with the sample itself moving at
700 mm/s.

2. Instrumentation

Figure 1 illustrates the measurement scheme of our ECOPS system. The setup employs two
passively mode-locked femtosecond lasers with an emission wavelength around 1560 nm, a repetition
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rate of 80 MHz and a pulse width of less than 80 fs. The incident power on the terahertz antennas is
about 25 mW.

One of the lasers (“Master”) has a fixed cavity length and therefore a fixed repetition rate. The other
laser (“Slave”) has a tunable repetition rate, realized by including a short free-space path in the cavity,
where light is coupled out of the fiber and back-reflected by a mirror attached to a piezo actuator. Each
laser features a photodiode, which converts a fraction of the optical pulses to electronic signals. These
signals are further processed in a phase detector, which generates a voltage output proportional to the
phase difference between the pulse trains of master and slave. A proportional-integral-derivative (PID)
controller regulates this voltage signal to zero by acting on the piezo in the slave cavity. In this way,
the pulse train of the slave laser is phase-locked to that of the master laser. An additional modulation
signal introduces a sinusoidal variation of the phase difference between the two pulse trains and thus
generates the intended “delay-stage” effect.
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Figure 1. Schematic of the terahertz TDS system based on ECOPS. Red, blue and orange lines denote
infrared optical signals, electronic signals, and the terahertz beam path, respectively.

The system further includes photoconductive switches (Fraunhofer Heinrich-Hertz-Institute,
Berlin, Germany) for terahertz generation and detection. Their semiconductor composition is based
on an InAlAs/InGaAs heterostructure [27,28], with the emitter being iron doped [29]. The emitter
features a strip-line antenna geometry with a 25 µm gap; the receiver incorporates a 25 µm dipole
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antenna with a 10 µm gap. The antennas are packaged in compact housings (25 mm diameter), which
include a silicon lens on the output side, as well as SM/PM fiber pigtails for the laser light.

For signal readout and data acquisition, we use a transimpedance amplifier with a bandwidth
of 3.5 MHz and gain of 106 V/A (model DHPCA-100, Femto Messtechnik, Berlin, Germany), and a
digital oscilloscope (Picoscope 4262, Pico Technology, St. Neots, UK).

All of the thickness measurements described in this work utilize a reflection setup, with the
sample placed at the focus of the terahertz beam. The angle of incidence is 8◦ and the terahertz spot
size is approximately 2.5 mm.

3. System Characterization

Figure 2 depicts the time-domain trace of a single-shot measurement acquired at maximum speed,
i.e., completed within 625 µs (green curve), together with an average of 1000 pulse traces (black). While
the main pulses appear virtually indistinguishable, the averaged trace exhibits a significantly reduced
noise floor, which is particularly evident in the pre-pulse background signal (inset).
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Figure 2. Single-shot terahertz pulse trace (green) taken at a measurement speed of 1600 traces per
second, and average of 1000 consecutive pulse traces (black). The inset shows a magnified cutout of the
pre-pulse noise floor.

Terahertz-based thickness gauging almost always relies on an evaluation of time-domain traces.
A crucial parameter to quantify system performance is thus the time-domain dynamic range (TD-DR),
defined as the maximum peak-to-peak amplitude of the pulse trace divided by the root mean square
(RMS) of the noise floor [30–32]:

TD-DR =
maximum peak-to-peak of amplitude

RMS of noise floor
. (1)

Figure 3a shows the TD-DR of the ECOPS instrument at its maximum measurement speed (200 ps
scan range @ 1600 Hz, blue triangles) and for the slowest setting (700 ps @ 200 Hz, red circles). As a
benchmark, we have included values obtained with a state-of-the-art terahertz TDS system (“TeraFlash
pro”, TOPTICA Photonics AG), with its mechanical delay adjusted to a comparable scan range (200 ps
@ 6 Hz, green squares). For each setting, we have evaluated both single-shot measurements as well
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as 10, 100 and 1000 trace averages. The single-shot TD-DR of the ECOPS system amounts to 61 dB
(=20 × log (TD-DR)), independent of the measurement speed. This agreement is expected, since the
slower measurement covers a larger scan range (see below) and consequently, overall data rates and
thus, electrical bandwidth requirements are comparable. By contrast, the TeraFlash pro achieves a
TD-DR of 82 dB, significantly higher than that of the ECOPS system. We attribute this difference to
two decisive characteristics of the design: First, the TeraFlash pro benefits from an extremely precise
mechanical delay [15], the low timing jitter of which translates into an excellent signal quality. Even
more important, the slower measurement speed of the TeraFlash pro permits the use of (comparatively)
low-bandwidth—and hence, low-noise—electronics for signal readout. Both effects contribute to the
high TD-DR, as evident from Figure 3a.

Averaging multiple time traces, the TD-DR is expected to scale with the number of averages Nave

according to:
TD-DR (dB) ∝ 20 log

(√
Nave

)
. (2)

Indeed, we find that averages of 10, 100, and 1000 terahertz pulse traces increase the TD-DR of the
ECOPS system by approximately 10 dB, 20 dB and 30 dB, respectively. A similar signal gain is observed
for the TeraFlash pro, too. Figure 3b rearranges the same data as a function of the measurement time.
In this regard, the ECOPS setup actually outperforms the TeraFlash pro, achieving a TD-DR of 91 dB in
less than one second. We will return to the trade-off between signal quality and measurement speed in
Section 4.
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Figure 3. (a) TD-DR as a function of the number of pulse-trace averages. The plot compares values
obtained with ECOPS at measurement speeds of 1600 traces per second (blue triangles), 200 traces per
second (red circles) and a conventional terahertz TDS system (TeraFlash pro) operating at 6 traces per
second (green squares). (b) Same data, as a function of the measurement time.

A complementary parameter in practical applications is the time-domain signal-to-noise ratio
(TD-SNR), which characterizes the minimum signal change that can still be quantified. The TD-SNR is
defined as the ratio of the mean peak-to-peak amplitude and its standard deviation [30–32]:

TD-SNR =
mean peak-to-peak amplitude

standard deviation of amplitude
. (3)
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Figure 4a compares TD-SNR values of the ECOPS system at 1600 Hz and 200 Hz to values
obtained with the TeraFlash pro. As before, we present values for single-shot measurements and 10,
100 and 1000 averages. Since a single measurement does not have any standard deviation, we calculate
the TD-SNR from 10 consecutive runs, and apply the same method to the averaged data (for instance,
the TD-SNR value for 100 averages is calculated from 10 runs, each run comprising 100 averaged
time traces). We find that TD-SNR values from 10 single-shot runs amount to 50 dB and 55 dB for
ECOPS at 1600 Hz and 200 Hz, respectively, and 74 dB for the TeraFlash pro. Akin to the TD-DR,
we find that a factor of 10 in the number of averages improves the TD-SNR by ~10 dB, in agreement
with refs [30–32]. Whilst the higher TD-SNR values of the TeraFlash pro are expected, the difference
between the two datasets obtained with ECOPS is still subject to further investigation. Tentatively, the
higher measurement speed (1600 Hz as compared to 200 Hz) results in an increased timing jitter, which
has no effect on the background noise (cf. Figure 3) but on the reproducibility of the signal amplitude
and consequently, the TD-SNR.

Figure 4b depicts the same TD-SNR data as a function of the measurement time. Viewed that way,
the performance of the different systems is comparable: they all achieve similar TD-SNR values in the
same measurement time.
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Yet another relevant parameter for terahertz TDS systems is the spectral bandwidth. Figure 5
shows terahertz power spectra, calculated by a fast Fourier transform of time traces obtained with
our ECOPS setup at 1600 Hz. In a single-shot measurement, the system achieves a peak dynamic
range (PDR) of 38 dB and the signal reaches the noise floor at 3.4 THz. All of the dips observed in
the spectrum correspond to literature values of water vapor absorption lines, as documented in the
HITRAN database [33]. With 1000 averages, the PDR increases to 68 dB and the detectable signal
extends to ~4.8 THz, still within a measurement time of only 0.6 s. Please note that the number of
averages affects the spectral bandwidth but not the resolution, which only depends on the scan range.

Figure 6 illustrates the interplay between the scan range and the measurement speed of our
ECOPS instrument. Depending on the experimental requirements, the measurement speed can be
flexibly selected between 200 and 1600 terahertz pulse traces per second. The increase in measurement
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speed is achieved by reducing the travel of the piezo in the slave-laser cavity, corresponding to a
reduction of the scan range. Set to the lowest speed, the ECOPS system achieves a scan range of about
700 ps. This large range enables the assessment of thick structures (~7 cm in reflection, assuming a
double pass through a sample with refractive index of 1.5), or spectroscopic measurements with high
resolution (~1.4 GHz). Even at this speed, the system still exceeds the limits of our conventional TDS
system by a factor of ~5. Vice versa, at maximum speed, the scan range of the ECOPS system amounts
to 200 ps. The ECOPS technology is then ~40 times faster than our state-of-the-art TDS unit with
mechanical delay.Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 11 
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4. Thickness Gauging

In order to investigate the precision of the ECOPS TDS system in thickness measurements, we
chose a piece of an un-doped wafer of high-resistivity silicon (CrysTec GmbH, Berlin, Germany) as our
sample. The silicon wafer has negligible dispersion, negligible absorption [34] and two plane-parallel
surfaces. Owing to the high refractive index of the material (n ~ 3.4), both the front and the back
surface of the wafer strongly reflect the incident terahertz pulses. We extract the sample thickness
via time-of-flight measurements, i.e., from the time difference between the zero-crossings of the pulse
“echoes” from either side. Figure 7 presents the results of thickness measurements carried out with the
ECOPS TDS system (at 1600 pulse traces per second), the TeraFlash pro (measurement speed 10 traces
per second), and a manual micrometer gauge (Holex 421505, Hoffmann GmbH, Munich, Germany).
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Figure 7. Thickness measurement results of a single point on the silicon wafer, obtained with ECOPS,
the TeraFlash pro and the micrometer gauge. Measurements with ECOPS and the TeraFlash pro were
repeated 10,000 times each, and the micrometer gauge measurement was repeated 50 times. The error
bars represent the standard deviation of the results.

In order to quantify the reproducibility of the thickness readings, we repeated the terahertz-based
measurements 10,000 times both with ECOPS and the TeraFlash pro, and 50 times with the micrometer
gauge. The error bars in Figure 7 denote the standard deviation of the results. With ECOPS, the
TeraFlash pro, and the micrometer gauge, we obtain thickness values of 527 ± 1.5 µm, 527.94 ± 0.04 µm,
and 527.5 ± 2.5 µm, respectively. We find that all three methods yield consistent results within a
1-sigma error margin. Note, however, that the scatter of the TeraFlash pro results is approx. 40 times
smaller than that of the ECOPS measurement. We attribute this to the difference in measurement speed
between the two systems: the ECOPS system is 160 times faster, which comes at a cost in measurement
accuracy. On the other hand, a repeatability on the 1 µm level is sufficient for the majority of industrial
applications. Moreover, as shown in the previous section, averaging successive pulse traces offers
a trade-off between measurement speed and accuracy. For instance, extracting thickness data from



Appl. Sci. 2019, 9, 1283 9 of 11

10 averaged traces reduces the standard deviation to ~0.5 µm (corresponding to an increase in the
TD-SNR by a factor of 3 ≈ 10 dB, see Figure 4), yet the ECOPS system remains 16 times faster than the
TeraFlash pro.

In order to validate the suitability of the system for a fast “real-world” thickness measurement,
we moved the silicon sample at speeds similar to that of actual production lines. Our mock-up
conveyor belt consisted of a vinyl-record player, on which the wafer was placed. The rotation speed of
45 rpm translates into a lateral velocity of about 700 mm/sec. The ECOPS measurement speed enables
us to evaluate the thickness of the wafer with a spatial resolution of about 0.4 mm (not considering the
actual focus size). Figure 8 depicts the ECOPS-based thickness readings across the wafer (red dots).
The ruler shown in the photograph illustrates the horizontal axis. For comparison, we also examined
selected locations on the same sample with the manual micrometer gauge. We note that the thickness
varies along the sample by as much as 10 µm, with ECOPS and micrometer-gauge results being in
good agreement.

We note that besides measurement speed, another important performance parameter is the
minimum layer thickness an instrument can resolve. Preliminary results (not shown here) indicate
that the thickness of layers as thin as ~30 µm can still be accurately determined. We surmise that even
thinner layers can be characterized using more sophisticated data post-processing algorithms.
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The green line in the photograph marks the approximate positions of the measured spots.

5. Conclusions

We characterized a fast terahertz TDS system with respect to signal quality and measurement
speed, and applied the system to non-contact thickness measurements of a piece of high-resistivity
silicon. Employing two synchronized femtosecond lasers rather than a mechanical delay stage, the
ECOPS system achieves a maximum measurement speed of 1600 pulse traces per second, at a scan
range of 200 ps. With the scan range extended to 700 ps, the system still maintains a measurement
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speed of 200 traces per second. This is one to two orders of magnitude faster than state-of-the-art TDS
systems with mechanical delay.

Set to a measurement speed of 1600 traces per second, the ECOPS system achieves a time-domain
dynamic range of about 60 dB for a single-shot measurement, and ~90 dB with 1000 trace averages, still
within a measurement time of less than one second. The time-domain signal-to-noise ratio amounts to
~50 dB and ~80 dB for 1 and 1000 averages, respectively.

In the frequency-domain, the ECOPS setup produces spectra with a frequency range of 3.4 THz
within 625 µs, and 4.8 THz within 625 ms.

Thickness measurements performed with ECOPS agreed well with results obtained with both
a conventional TDS system and a micrometer gauge. Mounting the sample on a record player, we
demonstrated the suitability of the system for continuous thickness monitoring in an industrial
production line. To the best of our knowledge, our work represents the fastest thickness measurements
accomplished with terahertz pulses so far.
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