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Abstract
We carried out an experimental comparison study of the two most established optoelectronic
emitters for continuous-wave (cw) terahertz generation: a uni-traveling-carrier photodiode
(UTC-PD) and a pin-photodiode (PIN-PD). Both diodes are commercially available and
feature a similar package (fiber-pigtailed housings with a hyper-hemispherical silicon lens).
We measured the terahertz output as a function of optical illumination power and bias voltage
from 50 GHz up to 1 THz, using a precisely calibrated terahertz power detector. We found that
both emitters were comparable in their spectral power under the operating conditions specified
by the manufacturers. While the PIN-PD turned out to be more robust against varying
operating parameters, the UTC-PD showed no saturation of the emitted terahertz power even
for 50 mW optical input power. In addition, we compared the terahertz transmission and
infrared (IR) blocking ratio of four different filter materials. These filters are a prerequisite for
correct measurements of the absolute terahertz power with thermal detectors.

Keywords Terahertz source . Continuous-wave terahertz (cw THz) .Millimeter-wave .

Optoelectronics . Photonics . Microwave photonics . Photodiode . Uni-traveling-carrier
photodiode (UTC-PD) . P-i-n photodiode (PIN-PD)

1 Introduction

Within the last decade, terahertz technologies attracted more and more interest due to an ever-
growing number of industrial, “real-world” applications. Originally invented for scientific
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research, terahertz techniques have found their way into non-destructive testing [1], process
control [2, 3], imaging [4], composition analysis [5–7], and wireless communications at carrier
frequencies up to 600 GHz [8, 9]. Among the multitude of techniques for generating and
detecting terahertz radiation, optoelectronic, continuous-wave (cw) terahertz devices combine
broad frequency tuning [10, 11] with high accuracy and sensitivity [12]. Furthermore, choos-
ing an optical excitation wavelength in the c-band (1530 to 1565 nm) enables the use of mature
and reliable components developed for fiber-optical communications, and, therefore, the
design and build of compact and cost-efficient cw terahertz systems [13, 14].

For cw terahertz emission, a photodiode can efficiently convert an optical signal into an
electrical one by so-callled “photomixing.” To this end, a pair of single-mode lasers generates
an optical beat with frequency fbeat = |fLaser1 – fLaser2|. For instance, choosing two lasers with
emission wavelengths of 1540 nm (194.67 THz) and 1547.95 nm (193.67 THz), respectively,
results in an optical beat with fbeat = 1 THz. When fed into a photodiode, the two-color signal
induces a photocurrent that is modulated at the beat frequency. An antenna attached to the
diode radiates the terahertz signal into free space. When tunable lasers are used as optical
sources, the difference frequency of the beat note can be changed over a broad spectral range,
which translates directly into widely tunable terahertz emission.

Figure 1 shows schematic band diagrams of the two different types of photodiodes, which
are commonly used today: the PIN-PD and the UTC-PD. The PIN-PD is based on an intrinsic
(i) absorption layer sandwiched between positively (p-type) and negatively (n-type) doped
layers. Photon absorption generates electron-hole-pairs in the depleted i-layer. Driven by the
intrinsic electric field and an external bias voltage, photogenerated electrons and holes travel
into the n- and p-layer, respectively. Thus, both types of carriers contribute to the photocurrent
in the device. While the comparably low effective mass of the electrons enables a fast
acceleration of these carriers, the holes are 10 to 20 times slower due to their higher effective
mass in III–V semiconductors [15]. This high effective mass of the holes ultimately leads to a
saturation of the high-frequency photocurrent in PIN-PDs, especially for high optical excita-
tion densities. Thus, the transit time of holes traveling from the intrinsic layer into the P-layer
becomes the main factor that determines the cutoff frequency of PIN-PDs.

In order to overcome this transit time limitation of PIN-PDs, UTC-PDs have been devel-
oped in the late 1990s [16]. UTC diodes rely on a p-type absorption layer next to an intrinsic
carrier collection layer (see Fig. 1b). This modified layer structure spatially separates photon
absorption and carrier acceleration. Since the p-doped absorber is close to the p-layer, holes do
not need to cross the carrier collection layer, but reach the p-layer within a very short traveling
time. Only the fast electrons are injected into the depleted carrier collection layer, where they
are accelerated by the intrinsic electric field of the collection layer to reach the n-layer. In order
to avoid electron diffusion into the p-contact, a blocking layer serves as barrier in the
conduction band (CB) between p-layer and p-absorber. At the same time, hole diffusion into
the carrier collection layer is suppressed by the valence band (VB) cliff, i.e., a barrier in the VB
between absorber and collection layer [17, 18].

Both PIN-PDs and UTC-PDs were originally developed as detectors in fiber-optical
communication networks [16, 19]. Later on, they were modified to match the requirements
for cw terahertz emission [20–26]. A detailed review on the technologies and, in particular, the
differences between PIN- and UTC-PDs can be found in reference [27].

In this paper, we compare commercially available PIN- and UTC-emitters with respect to
their frequency-dependent absolute terahertz output power as a function of the optical input
power and the external bias voltage. We relate the observed differences in frequency response
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and saturation behavior directly to the particular type of diode and terahertz antenna attached to
it. Before presenting the results of this comparison, we describe the experimental setup,
including a detailed comparison of four different absorber materials that are transparent for
terahertz radiation but block infrared light (IR). These IR attenuators are mandatory to perform
absolute terahertz power measurements with thermal terahertz detectors. To the best of our
knowledge, this is the first comparison study not only of PIN- and UTC-PDs but also of these
IR absorbers.

2 Experimental Setup

For the terahertz power measurements, we employed a pyroelectric thin-film (PTF) detector
(model THz20 from Sensor- und Lasertechnik GmbH), which is calibrated by the German
National Metrology Institute (PTB) [28, 29]. Figure 2a shows a sketch of the setup as used for
both the PIN- and UTC-emitters. Two external-cavity lasers (ECLs, model 81960A and
81608A from Keysight) emit light at wavelengths λ1 = 1540 nm and λ2 = 1540 nm + fTHz,
respectively. Combining the two ECL outputs produces an optical beat with envelope fre-
quency fTHz. A semiconductor optical amplifier (SOA, model BOA1004P from Thorlabs)
boosts the optical beat to the desired power level to drive the photodiode. The frequency of the
terahertz radiation fTHz is changed by tuning the wavelength λ2 of the second ECL. The PTF
detector is placed at a distance of 10 mm from the terahertz emitter. The circular sensor area of
the PTF detector has a diameter of 20 mm, which is sufficient to collect the emitted terahertz
signal, and therefore no collimating or focusing terahertz optics are needed (see Fig. 2b). A
waveform generator (model 3390 from Keithley) produces a 20 Hz square wave that
modulates the bias voltage of the photodiode between 0 V and the chosen operating voltage.
The modulation enables the use of a lock-in amplifier (LIA, model 7265 from Signal
Recovery). Before the LIA, a transimpedance amplifier (TIA, CurrentPreAmplifier from

Fig. 1 Schematic band diagram of a PIN-PD (a) and a UTC-PC (b). a Incoming light with energy Eph generates
free electrons in the conduction band (CB) and holes in the valence band (VB) of the intrinsic absorber region
(grey). Due to the intrinsic electric field, electrons move to the n-layer (blue) and holes to the p-layer (red).
Grading layers (white) between p-, i-, and n-layer ensure smooth junctions. b Incoming light generates free
electrons in the CB and holes in the VB of the p-type absorber (grey/red) of the UTC-PD. The blocking layer
between p-layer (red) and absorber prevents electrons from diffusing into the p-layer. Thus, only electrons are
injected into the carrier collection layer to reach the n-layer (blue). Photogenerated holes can reach the p-layer
without any blocking in the VB. However, the cliff layer in the VB introduces a barrier that blocks the diffusion
of holes into the collection layer
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Sensor- und Lasertechnik) is employed. A multimeter (model 2210 5 1/2 from Keithley)
measures the DC current of the photodiode.

Due to an impedance mismatch between waveform generator and terahertz emitter, the
terminal voltage of the waveform generator is not the actual voltage applied to the terahertz
emitter. While the output termination of the waveform generator is Ri = 50Ω, the resistance of the
illuminated photodiode changes with the optical illumination power. In order to correct this
mismatch, a multimeter measures the photocurrent of the diode, and the actual voltage Vdb at the
biasing port of the device is determined via Vdb =Vi − (Ri +Rc) · Idb. Here, Vi is the voltage applied
by the waveform generator, Ri is the output termination, Rc is the resistance of the circuit, which
consists of the multimeter and all electrical cables, and Idb is the photocurrent measured by the
multimeter. Hence, Vdb remains an accurate measure of the voltage applied at the biasing port of
the emitter even if the resistance of the diode varies. In case of the PIN-PD emitter, the voltage
VPIN applied at the input connector of the PD is equal to the biasing voltage, hence VPIN =Vdb. In
contrast, the UTC-PD is connected in parallel to a biasing resistor that reduces the voltage applied
to the UTC-PD according to VUTC =Vdb − (100 Ω · Idb). In the remainder of this paper, bias
voltages always refer to the corrected voltage Vdb at the biasing port of the emitter.

Pyroelectric detectors are sensitive to both IR and terahertz radiation. In our setup, the lock-
in modulation is purely electronic. Thus, the lock-in amplifier eliminates any DC response of
the PTF detector that might result from residual IR light. However, residual IR will still
generate an offset in the output signal of the detector, and thus distort the terahertz measure-
ment. For accurate terahertz power measurements, it is therefore essential to prevent any
residual IR light from reaching the detector. For this purpose, commercially available PIN-PD
emitters feature a black coating on the silicon lens, which reduces the residual IR at the
terahertz output to less than 0.05% of the optical power fed into the PIN-PD. For comparison
with the UTC-PD emitter, however, we removed this coating, such that both emitters featured
an uncoated silicon lens. In order to quantify the residual IR, we replaced the PTF detector
with an IR power detector (Thorlabs PM100D/S122C). The residual IR of the UTC and PIN
module at 30 mW optical excitation power amounts to 4.02 mW (13.4%) and 2.88 mW
(9.6%), respectively. In our setup, the 10-mm gap between emitter and pyroelectric detector
allowed us to insert and characterize different materials with respect both to their IR absorption
and terahertz transmission properties.

Employing the PIN-PD emitter, we examined four different IR absorbers, which are
common materials used in experimental terahertz setups: (i) a 9 mm thick plate of foamed
polystyrene, also known as Styropor™, (ii) an approx. 20 μm thick black foil of HDPE, (iii) a
0.65 mm Al2O3 ceramic plate with a black coating, and (iv) a 0.35 mm thick piece of black
cardboard. Figure 2d shows a photograph of absorber (i) inserted between emitter and terahertz
detector. In the same way, we measured the IR transmission using the detector shown in Fig.
2c. In Fig. 2e, absorber (ii), the black HDPE foil, is placed in front of the emitter.

The plot on the left-hand side in Fig. 3 depicts the terahertz transmission of the four
different materials at frequencies between 50 GHz and 1 THz. For ease of comparison, we
normalized the transmitted terahertz power to the power level without any filter. A low-pass
Fourier filter removes oscillations in the transmission curves that stem from standing waves
between the surfaces of the emitter, the detector, and the particular filter. Values higher than
100% result from the uncertainty of the PTF detector (6.9%). Ceramic and cardboard appear
transparent only at low frequencies (< 100 GHz) but exhibit a significant decrease in trans-
mission towards higher frequencies. In contrast, foamed polystyrene and the HDPE foil show a
comparatively flat transmission with an average value of more than 90% up to 1 THz.
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The bar chart on the right-hand side of Fig. 3 shows the measured IR absorption according
to the setup shown in Fig. 2c. Black cardboard and ceramic block absorb almost 100% of the
IR light, but as discussed above, this comes at a cost in terahertz transmittance, which drops to
50% for frequencies above 0.6 THz. On the opposite, the terahertz absorption of the HDPE foil

Fig. 3 Evaluation of potential filter materials for blocking residual IR light. Nine millimeters of foamed
polystyrene (red curve), 20 μm black HDPE foil (green curve), 0.65 mm ceramic with black coating (blue
curve), and 0.35 mm thick black cardboard (purple curve). The THz power between 50 GHz and 1 THz is
measured and normalized to the power spectrum without any filters in place. Foamed polystyrene and HDPE
exhibit the lowest terahertz absorption. A low-pass Fourier filter reduces oscillations in the spectra that stem from
standing waves between emitter, filter, and detector surface. The plot on the right-hand side shows the measured
IR absorption. Note that all materials block more than 98 % of the IR light, whereas their frequency-dependent
terahertz transmission varies significantly

Fig. 2 a Schematic setup of the terahertz power measurement. Two external-cavity lasers (λ1, λ2) are combined
to generate an optical beat signal, which is amplified by a semiconductor optical amplifier (SOA) and fed into the
photodiode emitter (Tx). A waveform generator modulates the bias voltage with a 20 Hz square wave between
0 V and the desired device bias Vdb. A multimeter measures the resulting time-averaged DC photocurrent. The
pyroelectric thin-film (PTF) detector is placed in front of the emitter at 10 mm distance. After amplification by a
transimpedance amplifier (TIA), the detector signal is fed into a lock-in amplifier (LIA) referenced to the
modulation frequency of the bias voltage (sync). b A photograph of the PIN-emitter in front of the detector.
Note that no terahertz optics are used to guide the radiation from the emitter to the power detector (“face-to-face
arrangement”). c The PTF detector is replaced by an infrared (IR) detector to determine the residual IR excitation
from the emitter. In order to block the residual IR but transmit the terahertz signal, IR filters like foamed
polystyrene (Styropor™) (d) or a black HDPE foil (e) can be inserted into the 10 mm gap between emitter and
PTF detector
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and Styropor™ is negligibly low, and both materials show an IR absorption higher than
98.5%. In the case of Styropor™, we observed a strong spatial dependence of the IR
absorption, i.e., the IR absorption varied when the plate was moved perpendicular to the
optical axis. We attribute this to the presence of millimeter-sized polystyrene grains, which
change the optical path through the material depending on the illumination.

We therefore chose the HDPE foil as infrared absorber, due to its high terahertz transmis-
sion, fair IR blocking ratio, and ease in handling. Considering the amount of residual IR of the
particular emitters, the fraction of the excitation power that reaches the PTF detector is only
0.20% in case of the UTC emitter and 0.14% in case of the PIN emitter. All of the terahertz
measurements presented below were performed with the HDPE absorber in place.

3 Results and Comparison

In this paragraph, we present a detailed comparison of the emitted terahertz power as a
function of frequency, optical excitation power, and bias voltage for the PIN-PD and the
UTC-PD emitter.

Figure 4 shows the emitted power between 50 GHz and 1 THz, at the recommended
operating conditions given by the diode manufacturers, i.e., 30 mWoptical power and − 1.5 V
(− 1.0 V) device bias for the PIN-PD (UTC-PD) emitter.

For frequencies between 400 GHz and 1 THz both emitters show a frequency roll-off of
approx. 20 dB per decade, in agreement with the theoretical curve (dotted line in Fig. 4). We
attribute this behavior to a first-order low pass arising from the RC constant of the photodiode.
The RC bandwidth of an electromagnetic circuit is given by fRC = (2π RtotCPD)−1. Here, fRC is
the cutoff frequency, CPD is the capacitance of the photodiode and Rtot is the total resistance
with contributions from the diode (Rpd) and the antenna (Rant) as shown in the simplified
equivalent circuit of a PIN-PD in Fig. 5b. Note that in this equivalent circuit, the high
resistance of the intrinsic absorber, which actually exists in parallel to the capacitance Cpd, is
neglected. This is a valid simplification because the capacitor Cpd is shorted for high frequen-
cies [18]. Further, the impedance of the bow-tie antenna consists of a real part (Rant) only, since

Fig. 4 Emitted terahertz power of PIN-PD (green curve) and UTC-PD (blue curve) emitters at their recom-
mended operating conditions. -1.5 V device bias and 30 mWoptical power for the PIN-PD, and − 1.0 V device
bias and 30 mW optical power for the UTC-PD. The dotted line indicates a decrease of 20 dB per decade
corresponding to a first-order low pass
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the particular bow-tie antenna features a self-complementary structure and follows Babinet’s
principle [30, 31]. The fact that PIN-PD and UTC-PD show similar power levels for frequencies
above 400 GHz suggests that the 3-dB frequency of both devices is comparable. The resistance
and the capacity of the PIN-PD amount to 65 Ω and 19 fF, respectively, predicting a calculated
RC-limit of fRC, PIN ≈ 130 GHz, while 81Ω and 14 fF of the UTC-PD predict fRC, UTC ≈ 140 GHz.
Both values are in good agreement with the measured spectra shown in Fig. 4, i.e., starting to
follow the − 20-dB slope at the respective cutoff frequency.

Figure 4 further reveals significant differences between the two emitters at frequencies
below 300 GHz. While the UTC-PD emits approx. 100 μW at 250 GHz, the PIN-PD only
produces 30 μW. In contrast, the PIN-PD emits 200 μW at 130 GHz compared with 30 μW
from the UTC-PD. We attribute this effect to the frequency-dependent impedance match
between photodiode and antenna, which, in turn, results from different contact designs
between photodiode and antenna (see Fig. 5a) as well as different antenna geometries. Even
though both emitters feature a bow-tie antenna for broadband emission, differences in the
antenna size and the geometry of the feeding point result in significant differences in frequency
response. In order to verify this assumption, we performed simulations for the PIN-PD, using
different contact designs and antenna geometries. The results show that these parameters
indeed determine the pronounced power drop around 250 GHz. Beyond 400 GHz, this
influence becomes negligible, as the reactance of antenna and photodiode approach zero
whereas the resistance of the antenna is constant. (Details of these simulations will be
presented in a future paper.) Similarly, the strong decrease in the terahertz output power of
the UTC-PD around 130 GHz can be attributed to frequency-dependent impedance matching.
The frequency-independent impedance predicted by Babinet’s principle is only valid for
antenna dimensions greater than the wavelength. Thus, there exists a low-frequency cutoff
for real bow-tie antennas. In case of the UTC emitter, the decrease of radiated power around
70 GHz and 110 GHz is attributed to the frequency dependence of the antenna impedance.
Additionally, the dimensions of the antenna of the UTC-PD are designed for efficient THz
emission beyond 300 GHz only.

One would expect that the transit-time limit of the charge carriers gives rise to another low
pass with bandwidth f t ¼ 3:5 v= 2π dabsð Þ. Here, v is the average carrier drift velocity and dabs
is the thickness of the absorber that the carriers have to traverse. However, the power spectra of

Fig. 5 a Scanning electron microscopy picture of a PIN-PD: p-, i-, and n-layer are stacked on top of the
waveguide (WG) layer for optical excitation. The n-layer is connected to gold pads from the left and right side.
An air bridge connects the p-layer to the gold pad in the background. b The simplified equivalent circuit consists
of a capacitance Cpd in parallel to the injection of the photocurrent Iph. The photodiode resistance Rpd and the
antenna resistance Rant are connected in series. Capacitance, resistance, and injected current correlate to the
geometry of the PD and the material properties, illustrated by the cross-section overlay of the PIN-PD
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Fig. 4 do not show any evidence of a transit-time contribution. Thus, the influence of the
transit-time still remains to be investigated. Since the absorber thickness dabs determines not
only the carrier transit-time but also the capacitance of the PD and the volume of the light
absorbing area, this parameter has to be designed very carefully. Note that in the UTC-PD,
only the drift velocity of electrons contributes to the transit-time, which reduces the design
restrictions for the absorber layer.

Another significant difference between PIN- and UTC-PDs is the DC photocurrent of the
two devices. Under the conditions given in Fig. 4, the photocurrent of the PIN-PD amounts to
8.9 mA, whereas the UTC-PD produces no more than 4.6 mA. Since a poor optical coupling
efficiency and a thin absorber are the price to pay for the UTC design, the UTC-PD shows only
half of the responsivity of the PIN-PD. However, due to the advantageous carrier dynamics,
the UTC-PD still achieves a comparable terahertz output power.

Next, we acquired detailed parameter maps of the terahertz output of both emitters as a
function of optical power and bias voltage. Figure 6 shows contour plots of the measured
terahertz power at 100 GHz, 300 GHz, 500 GHz, and 700 GHz. The power is normalized to
the maximum of each plot and the colors represent a logarithmic scale. The normalization
allows investigating the stability of the terahertz emission under varying operating conditions.
Graphs in the left and right column in Fig. 6 depict the results obtained with the UTC-PD and
PIN-PD, respectively. In each subplot, dark red areas represent the maximum terahertz power
emitted by the device and dark blue colors correspond to the noise floor of the detector, which
is reached at power levels around 1 μW. The contour lines enclose areas in which the emitted
terahertz power remains − 1 dB, − 3 dB, − 6 dB, and − 9 dB below the respective maximum.
The graphs illustrate that both types of emitters require more than 30 mWof optical power to
reach their maximum output. In addition, with both emitters, the maximum power shifts
towards lower bias amplitudes with increasing frequency. Up to 500 GHz, the PIN-PD covers
larger 1-dB and 3-dB areas than the UTC-PD. This may be an advantage to ensure stable
operation under varying operating conditions, e.g., due to environmental influences in a non-
laboratory setting. In a 300-GHz communication link, for example, the optical power at the
terahertz emitter can vary depending on the modulation format.

Note that at all frequencies, the UTC-PD reaches its highest output power at 50 mW
illumination. In contrast, the PIN-PD performs best between 35 and 40 mW. Higher optical
powers cause a roll-over behavior of the terahertz output, which points towards a screening effect:
the intense optical power produces a high density of positive and negative charge carriers, which
then attenuate the external electric field. On the opposite, the UTC-PD does not show any roll-
over or screening effect, which is explained by the lack of holes in the active region.

The power maps of Fig. 6 allow us to revisit the operating conditions for both devices.
Hence, we attempted to identify a parameter set that maximizes the terahertz output in particular
at high frequencies, i.e., 700 GHz to 1 THz. For the UTC-PD, we deduce from Fig. 6 that the
terahertz power increases with both bias voltage and optical input, and the “recommended”
conditions of Fig. 4 (− 1.0 V device bias and 30mWoptical feed) are not yet the optimum ones.
For the PIN-PD, we find that an optical power higher than 30 mW is beneficial for achieving a
high terahertz output, while a bias voltage of − 1.5 V seems adequate.

In Fig. 7, we show power spectra obtained with optimized parameter sets. The upper panel
represents the power increase in dB compared with the recommended operating conditions of
Fig. 4, and the lower panel depicts spectra of the absolute power. Note that the optimized
parameters increase the output of both emitters at all frequencies. In the low-frequency range
(< 100 GHz), the PIN-PD even exceeds 0 dBm. Above 500 GHz, the new parameter set
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Fig. 6 Emitted terahertz power of the UTC-PD (left column) and PIN-PD (right column) modules as a function
of optical power (0 to 50mW, vertical axis) and device bias (− 2.0 to − 0.5 V, horizontal axis) for 100GHz, 300GHz,
500 GHz, and 700 GHz. In each of the contour graphs, the power is normalized to the maximum and plotted on a
logarithmic scale. The lines indicate parameter ranges that correspond to a power drop of 1 dB, 3 dB, 6 dB, and 9 dB
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increases the terahertz output by 4.3 dB and 2.8 dB on average for the UTC-PD and PIN-PD,
respectively. For instance, at 1 THz, the UTC-PD reaches an output power of − 20.9 dBm, and
the terahertz power emitted by the PIN-PD is only 3 dB lower. Note that the increase in
terahertz power is almost spectrally flat for both devices. This means that the spectra of Fig. 4
appear more or less offset-shifted to higher levels in Fig. 7. While we are aware that increasing
the bias voltage and optical power beyond the limits given by the manufacturers might
compromise the lifetime of the devices, a long-term study is beyond the scope of this work.

4 Conclusion

To the best of our knowledge, we performed the first experimental comparison of a UTC-PD
and a PIN-PD for continuous-wave terahertz emission between 50 GHz and 1 THz. We
measured the absolute power with a calibrated pyroelectric detector and quantified the
contributions of optical input power and bias voltage. We found that when the UTC-PD and
the PIN-PD are operated as recommended by the respective manufacturer, they produce
comparable terahertz output spectra. However, at frequencies lower than 400 GHz, the
electrical properties of the terahertz antenna and the contact design of the emitter result in
prominent features in the power spectrum. At higher frequencies, a first-order low pass
dominates the spectral output of both devices, which leads to a 20-dB decrease per decade.
We attribute this behavior to the RC limitation, i.e., the resistance and capacitance of the
photodiodes. We further measured the emitted terahertz power as a function of optical input
power and bias voltage. We found that charge carrier screening leads to a roll-over behavior of
the terahertz output at optical powers higher than 40 mW in the PIN-PD. The UTC-PD, on the

Fig. 7 Absolute value (lower plot) of the emitted terahertz power between 50 GHz and 1 THz for the UTC-PD
and PIN-PD at optimized operation parameters derived from the power maps at 700 GHz. − 1.5 V device bias
and 50 mW optical power for the UTC-PD, and − 1.5 V device bias and 40 mW optical power for the PIN-PD.
The increase in terahertz output compared with recommended parameters is shown in the upper panel
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other hand, does not reveal any saturation effects up to 50 mW optical input. With optimized
driving parameters, the output power for frequencies beyond 500 GHz could be increased by
4.3 dB and 2.8 dB for the UTC-PD and PIN-PD, respectively, as compared with the
recommended operating conditions. A possible impact on the reliability of the devices due
to altered operating condition still remains to be investigated.

In addition, we characterized four common materials for infrared (IR) absorption. Since
residual 1.5 μm laser light can distort any terahertz power measurements, accurate IR
suppression is mandatory. Ceramic (Al2O3) and cardboard absorbers turned out to block IR
light very well; however, they also absorbed the terahertz radiation, especially at frequencies
higher than 600 GHz. Foamed polystyrene revealed a spectrally flat terahertz transmission of
more than 90% while blocking more than 98% of the residual IR. However, polystyrene
consists of millimeter-sized grains, which lead to a variation in the optical attenuation when the
absorber is moved. The best compromise for high IR blocking, high terahertz transmission,
and good homogeneity was found with a 20 μm thick piece of HDPE foil. We therefore chose
this IR filter for our terahertz power measurements.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.
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